Large-scale Multi-robot Mapping in MAGIC 2010

Robert Reid, Member, IEEE, Thomas Braunl, Senior Member, IEEE

Abstract—We describe a large-scale decentralised multi-robot
mapping system that outputs globally optimised metric maps in
real-time. The mapping system was used by team WAMbot in the
finals of the Multi-Autonomous Ground-robotics International
Challenge (MAGIC 2010). Research contributions include a novel
large-scale multi-robot graph-based non-linear map optimisation
approach, a hybrid decentralised and distributed mapping system
and novel graphics processing unit (GPU) based approaches
for accelerating intensive map matching and fusion operations.
Our mapping system scales linearly with map size and on
commodity hardware can easily map a 500mx500m urban area.
We demonstrate robust, highly efficient and accurate mapping
results from two different fleets of mobile robots. Videos, maps
and timing results from the MAGIC 2010 challenge are presented.

Index Terms—Large-scale multi-robot mapping, simultane-
ous localisation & mapping (SLAM), graph-based SLAM, dis-
tributed, decentralised, GPU map fusion, GPU map correlation.

I. INTRODUCTION

HE goal of the Multi-Autonomous Ground-robotics Inter-
T national Challenge (MAGIC 2010) was to design a fleet
of unmanned ground vehicles (UGVs) that were capable of
exploring and mapping a large (500m x 500m) urban area while
identifying objects of interest (OOIs). The ultimate objective
of the USD $1.2 million challenge was to demonstrate high
levels of autonomous control over large groups of UGVs. To
robustly map large areas of unknown terrain with teams of
heterogeneous UGVs an advanced multi-robot simultaneous
localisation and mapping (SLAM) system is required.

SLAM describes the tightly coupled problem of accurately
localising a robot within a coordinate frame, while building
a map of its unknown environment [1], [2]. In outdoor
environments the problem becomes difficult in the presence
of noisy sensor data, where wheel slippage and civilian-
grade GPS produce distorted position data. Here also ran-
dom and systematic errors frequently occur in scanning laser
range finder (LIDAR) data due to complex beam dynamics
in an irregular environment. The SLAM problem has been
understood for over a decade and convincing systems for
mobile robots have been described in both laboratory and
real-world conditions. However, there are limited examples
of robust SLAM solutions fusing data from multiple UGV
into a single globally metric map. The move from single to
multiple independent mobile robots introduces considerable
complexity [3], [4], [S]. The most significant problems are

Manuscript received April 20, 2011. This work was supported in part by
the Air Force Research Laboratory, under agreement number FA2386-10-4024
U.S. as well as through a grant by Thales Australia.

Robert Reid and Thomas Bréunl are with the Centre for Intelligent Infor-
mation Processing Systems, School of Electrical, Electronic and Computer
Engineering at The University of Western Australia, e-mail: rob@rrfx.net.

accurately localising and synchronising multiple robots in a
common coordinate system, and fusing multiple streams of
mapping data in real-time into a single coherent global map.

The need to communicate mapping data between UGVs
and the ground control station (GCS) creates many additional
problems. Radio signals are often noisy and unreliable, and the
challenge required our mapping system to handle periods with-
out communication. Multi-robot mapping systems can either
be centralised with a master node at the GCS, or decentralised
with each UGV fusing its own version of the global map. In
the centralised case a single global map ensures each robot
is locked into the same coordinate system, however extended
loss of communications to the master node can be fatal.
A decentralised design allows UGVs to continue operations
individually or in smaller groups, however it is vulnerable to
divergence of coordinate systems especially in the absence of
any global reference in GPS-denied environments. In this work
we describe a hybrid-decentralised solution where mapping is
fully decentralised, however a master node may “lock down”
parts of the global map to maintain synchronisation.

Diverging or completely unsynchronised UGV coordinate
systems are fatal to mission-related tasks such as position
commanding and OOI observation correlations. Synchronising
coordinate frames and aligning each robots’ map is a consid-
erable problem that relates closely to the well known “loop
closure” problem described in the SLAM literature [2]. Loop
closures occur continuously in multi-robot systems between
groups of robots and the global map.

In the decentralised and distributed mapping case, each
UGV must process the SLAM data produced by all UGVs in
real-time. This requires a highly-efficient approach, especially
considering the UGV’s processor is already loaded with other
intensive mission related tasks. With multiple UGVs operating
in the same area, large amounts of overlapping mapping, or
occupancy, data is generated. Matching and fusing this data in
real-time is a non-trivial problem. Modern graphics processing
units (GPUs) have massively parallel stream processing abil-
ities, and inexpensive GPUs are frequently embedded in PCs
and mobile devices. In this work we show how they can be
leveraged in robotic mapping to accelerate map building and
matching tasks. The majority of processing is offloaded onto
the GPU, unburdening the CPU.

Since the localisation aspect of SLAM is implicit in multi-
robot mapping, we refer to our work simply as a “mapping sys-
tem”. The MAGIC 2010 challenge required a robust mapping
system for urban environments. It was held at the Adelaide
Royal Showgrounds, where the terrain was frequently uneven
and included ramps, dirt, sand, and grass. The area did
not include stairs or overpasses permitting a 2D mapping

approach. Both indoor and outdoor areas required a mapping
system that could cope with the transition between full sunlight
and indoor lighting and also intermittent civilian-grade GPS
availability. The mapping system had to deal with observations
of moving OOlIs, excluding them and other UGVs from the
static global environment maps.

The mapping system described here addresses both these
research problems and the challenge requirements. It helped
the Western Australian MAGIC robot team (team WAMbot)
achieve 4" place in the international MAGIC 2010 challenge.
Research contributions include a novel large-scale multi-robot
graph-based non-linear map optimisation approach, a hybrid
decentralised and distributed mapping system and a novel
GPU-based approach to accelerate intensive map matching
and fusion operations. The next section reviews previous
related work. Section III describes the WAMbot robots and
our mapping system in more detail. Section IV presents results
from our mapping system in the MAGIC 2010 challenge.

II. PREVIOUS WORK

The SLAM problem is well understood [1], and many solu-
tions exist for mobile robots fitted with odometry sensors and
2D scanning laser range-finders [2]. We briefly describe the
main approaches here, but note that most of these techniques
fail to scale appropriately with map size and require some
form of hierarchical sub-mapping to deal with a 500mx500m
urban environment.

The classical approach is the Extended Kalman Filter
(EKF), which represents the map state as a multivariate
Gaussian distribution [6]. EKFs scale in O (n2) time, where
n is the number of features in the map. The dense covariance
information typically limits real-time execution to several hun-
dred map features. Sub-mapping approaches exist [7] however
heading issues around the origin and the accumulation of non-
linearities result in the map eventually becoming inconsistent
[6]. While the EKF can be used in multi-robot mapping [5],
no convincing results were found that distributed the problem
efficiently for large-scale mapping.

The mathematical inverse of the EKF, the sparse extended
information filter (SEIF) [8] has been show to scale in linear-
time O (n), however recovering the full map and covariance
information for data association is expensive and inconsisten-
cies result from repeated linearisation.

Monte Carlo particle filter (PF) based approaches, such as
FastSLAM [9], have demonstrated impressive real-world re-
sults. Here the map state is represented by a set of particles that
record the historical pose of the robot. Each particle stores one
complete hypothetical map that is re-sampled each iteration.
Consistency issues [10] and particle depletion ultimately limits
the scalability of this approach. Multiple robots have been
demonstrated [4], however real-time computational resources
bound the total particle count, limiting either the number of
robots or the map size and complexity.

Graph-based SLAM approaches store robot pose estimates
and observed features, such as laser scans, as nodes in a graph.
Constraints between nodes describe the estimated relative

transformation between robot poses. Using these constraints
a non-linear estimation process jointly optimises the poses of
the nodes with the goal to minimise the total error in the
constraints. Constraints are typically estimated using a scan-
matching approach such as iterative closest point (ICP) [11].
The earliest attempts at graph-based SLAM by Lu and Milios
[12] were slow due to inefficient optimisation techniques.
Since then many increasingly efficient approaches have been
proposed, refer to [13] for a brief review. Graph-based SLAM
avoids common inconsistencies by continuously re-linearising
the error function.

The recent graph-based SLAM solution by Konolige et al.
[13], called “Sparse Pose Adjustment” (SPA), uses a sparse
implementation of the Levenberg-Marquardt non-linear opti-
misation algorithm. It takes into account the full covariance
information in the pose constraints and has been shown to
execute faster than existing approaches while maintaining
lower error bounds. When used incrementally in a typical
online optimisation, SPA’s computation time increases linearly
with the number of constraints. It can incrementally optimise
individual new constraints in a 10,000 constraint graph within
10ms on modest hardware [13]. We use SPA in our mapping
system, however extend the approach by fusing multiple laser
scans into larger “submaps” that become nodes in the SPA
graph. Graph-based SLAM approaches are highly-suited to
multi-robot mapping [3], since they segment robot pose, sensor
data and pose constraints in a way that is easily transferable
between individual robots.

There are very few published works describing the use of
GPUs in robotic mapping. One notable paper by Olson [14]
uses OpenGL GLSL shaders to perform brute-force correlative
scan-matching. Results show considerable robustness to initial
pose and noise, with exhaustive GPU-based approaches an
order of magnitude faster than same calculations on the CPU.

III. METHODOLOGY

The WAMbot mapping system runs on each mobile robot
(UGYV) and the control station (GCS). On each UGV its critical
function is to process mapping sensor data, down-sample it
and broadcast it in real-time along with localisation informa-
tion. On each UGV and the GCS it periodically generates
complete globally-optimal maps that are output to the path
planning and high-level control sub-systems. Each map is a
2D occupancy-grid with 10cm resolution that represents the
static environment. They are ortho-rectified, globally-aligned
images where each 10cm square pixel records the likelihood
that it is free-space, unknown, or occupied [2].

A. Overview

At the heart of the mapping system is a distributed and
decentralised graph-based SLAM implementation based on
SPA [13]. This non-linear optimisation approach efficiently
finds the globally-optimal arrangement of the complete map.
Each UGV generates a sequence of small and locally accurate
“submaps” containing 2D spatial information describing their
surrounds. In this graph-based SLAM formulation submap

Submaps

UTM
Grid

Ground-truth
Constraints
Submap
Constraints

Figure 1. Graph-based multi-robot SLAM using submaps. In a global UTM
reference frame submap poses (z,y, ¢) are optimised to minimise the total
error in their spatial constraint “springs”.

poses (nodes) are linked by constraints that describe the
relative 2D translation and rotation between pairs of submaps.
Each constraint includes precision information (inverse co-
variance) that forms the “springs” describing the strength of
the translation and rotation constraints. Figure 1 shows the
submap and constraint relationships. Constraints are gener-
ated by either relative wheel odometry, global ground-truth
measurements, submap matching (loop closure), or added by
an operator using the human machine interface (HMI). The
mapping system broadcasts compressed submap map data,
submap poses, submap constraints and robot poses over-the-
air to other UGVs and the GCS. Figure 2 shows the system’s
logical architecture. It can be separated into SLAM front-end
and back-end components:

e Local SLAM: the SLAM front-end executes in real-time
on each UGV to produce submap information. UGVs
broadcast their submap data over DDS.

o Mapbuilder: forms the SLAM back-end that runs sepa-
rately on each UGV and the HMLI. It receives all broadcast
submap information from UGVs and periodically outputs
the global map. The Mapbuilder has 3 sub-components:

— Optimiser: performs incremental map optimisation.

— Builder: composes or fuses the submap data and
outputs complete global maps.

— Matcher: searches for spatial matches between
submaps creating additional map constraints. It
searches for “loop closures” between UGVs.

The following sections detail the UGVs’ mapping sensors and
each of these software components.

B. Mapping Hardware

Each WAMbot UGV is built on a Pioneer AT-3 robot base
and is fitted with a homogeneous sensor suite. The complete
WAMbot platform is described in [15]. The primary mapping
and localisation sensor for each UGV is a SICK LMSI111,
a single-plane laser range-finder providing a 20m range and
270° horizontal field of view. The LMS111 is mounted 50cm
above the ground where it provides an immediate view of
the environment. A second Hokuyo URG-04LX single-plane

laser scanner is mounted vertically on the front of each
UGV where it measures a profile of terrain elevations. To
detect each UGV’s local (relative) motion they are fitted with
high-resolution wheel encoders and an XSenS MTi inertial
measurement unit (IMU) providing 6 degree of freedom (DOF)
pose and motion estimates.

Globally-referenced position estimates are generated by a
Qstarz civilian-grade GPS receiver, and approximate heading
information is provided by magnetometers in the XsenS unit.
This relatively “noisy” global pose information is typically
only available outdoors with a clear view of the sky. In ideal
situations outdoors +5m position and +10° heading accuracy
is achieved. Both the GPS and magnetometers have difficult
failure-modes to detect (multi-path reflections and magnetic
interference respectively) and are aggressively filtered if the
HDOP value rises above 1.5 or satellite count below 8.

Each UGV is fitted with a single Intel Core 2 Duo auto-
motive PC that interfaces directly with these sensors. Wireless
networking is based on an ad-hoc consumer-grade 802.11g
Wi-Fi overlaid with an OLSR mesh network. Communica-
tion is performed at the application level using RTI’s fault-
tolerant distributed data system (DDS). The mapping system
is allocated a maximum 500Kbit/sec total of wireless network
bandwidth.

C. Local SLAM

The Local SLAM subsystem provides the SLAM front-end
that executes on each UGV. It processes all sensor data in real-
time and broadcasts submap data. Refer to figure 2 for logical
architecture information. It produces locally metric map tiles,
or “submaps” each having their own local coordinate system.

With the sensing characteristics of the LMS111 laser scan-
ner, a single scan can produce a detailed submap that is up-to
40m in diameter and covers a 270° horizontal field of view.
The laser beam divergence and noise characteristics (including
in sunlight) typically creates a metrically accurate laser point
cloud. While the UGV travels across short distances, multiple
laser scans taken at 10Hz are aligned using iterative closest

UGy GCS

laser point<loud <<component=> gl
””””” Local SLAM

<<component>>
Vehicle Manager &l jencodsqudomeivi | copprent]
[Z1[-=] | SsubmapOptimisar

<<component->
Laser Scanner

i p <<component>> i
e BT || sumptarer 2| |
= e =
<ccomponant>> E Submap Opfimiser I T T
£ore ! : :
<<component=> -1 " :
]]

Submap Matcher

U;<V Path Flu:, E v v
B ner L_ — 3
ap E GCS: Al
‘Submap Builder
<<compenent> SIS - - -

UGV: Exploration

Figure 2. Mapping system Logical Architecture. The components on the
left execute as separate processes on each UGV. The Mapbuilder processes
executes on each UGV and the on GCS where it outputs complete maps via
shared memory where needed. Data is broadcast between UGVs and GCS
using DDS over a Wi-Fi mesh network.

Figure 3.
Both of the UGVs are at their submap origin facing to the right.

Example 25x25m submaps inside the Old Ram Shed Challenge.

point (ICP) algorithm [11], and aggregated into the current
submap. In a typical urban environment the geometry doesn’t
change significantly over a distance of a few meters, allowing
accurate sequential scan registration and very low drift within
each submap. Robust outlier rejection (RANSAC) is used to
ignore moving objects in the laser data. Figure 3 shows two
example submaps from two UGVs.

The ideal mapping system would store and broadcast full
laser scan point-clouds and fine-grained odometry between
UGVs. However, CPU, storage and wireless bandwidth re-
strictions require that the sensor data and laser point clouds
be filtered and down-sampled. The challenge required accurate
navigation of our 50cm wide UGVs through 90cm doorways.
As such our approach down-samples the data into 2D oc-
cupancy (likelihood) maps with a 10cm grid [2] providing
adequate spatial resolution for path planning.

When starting a new submap each UGV’s local pose is
reset to zero with zero uncertainty. As each UGV navigates
through its submap, the relative wheel odometry, IMU data
and ICP scan matching results are fused using an extended
Kalman filter (EKF). To cope with excessive wheel slippage,
UGV tilt information from the IMU is used to switch the EKF
between different motion models favouring either odometry or
ICP matching.

After moving more than a distance threshold (4 meters in
the challenge) the current submap is closed. The UGV’s local
pose-estimate including its multi-modal Gaussian uncertainty
information are broadcast as an odometry constraint joining
the recently closed submap with the newly created one. If the
GPS and compass sensor is considered valid, this globally-
referenced position data is broadcast as a fixed “ground-truth”
constraint on the new submap. The submap occupancy-grid
data is rendered, compressed and broadcast either every 5
seconds, or when the map is closed, to minimise network
traffic. In the challenge environment the transmitted mapping
data totalled about 10Kbit/sec per UGV, about 2% of the
mapping bandwidth budget per UGV.

D. Mapbuilder

The Mapbuilder provides the SLAM back-end. It period-
ically optimises the global map and outputs it via shared

memory as required. Instances of the Mapbuilder run on each
UGV and the HMI. The Mapbuilder has 3 sub-components:

D-1. Submap Optimiser

The submap optimiser implements a multi-robot graph-
based SLAM algorithm. It periodically performs an incre-
mental non-linear optimisation on all submap poses for all
UGVs using available submap constraints. It is based on the
recent sparse pose optimisation (SPA) work by Konolige et al.
[13]. We extend their work by decentralising the optimisation
process across multiple UGVs and incorporating globally
referenced ground-truth constraints (GPS and compass).

SPA’s non-linear optimiser uses the Levenberg Marquardt
(LM) non-linear optimisation algorithm. For a detailed ex-
planation of the optimisation algorithm and constraint cost
function refer to [13]. The submap poses form nodes in a
graph and the constraints are the links or “springs” between
the nodes. An analogy for the optimisation process is that
the submaps are sliding and rotating on a frictionless surface,
while the constraint springs of differing strengths pull the
submaps into alignment. Ground-truth constraint springs tie
the submaps down to globally referenced coordinates (refer to
figure 1). The map is globally optimised when the tension in
the springs (the constraint error) is evenly distributed.

Keeping multiple completely decentralised maps synchro-
nised is difficult with intermittent communications. While
the DDS communications layer is fault-tolerant and includes
message buffering and replay, the buffer sizes are limited and
in extended operation it is inevitable that some UGVs may
lose submap data. To prevent each optimiser from producing
different solutions (diverging UGV coordinate systems), an
instance of the submap optimiser at the GCS is designated as
the “master”. We describe the system as a hybrid-decentralised
approach. As the master optimiser aligns submap poses, any
movements larger than a threshold are broadcast as submap
pose updates to the UGVs. The non-master submap optimisers
accept these poses and fix them in their local map. Partial or
complete communication failures with UGVs can occur and
they will continue to function independently optimising both
new and previously unfixed submaps. When communication
is re-established map data is automatically re-synchronised.

D-2. Submap Builder

The submap builder fuses all the submap occupancy-grid in-
formation together to create a complete global occupancy-grid
map. To efficiently fuse thousands of overlapping submaps,
the map is rendered using hardware-based acceleration on the
GPU. To ensure cross-platform and hardware compatibility we
render the map using OpenGL GLSL fragment shaders into
an off-screen render-buffer.

Submaps are held as 8-bit RGB textures in the GPU’s mem-
ory. The red colour channel stores the occupied/free/unknown
cell likelihood information. The green channel holds a Gaus-
sian blurred version of the occupied cells that is used as a
cost-map for the navigation system, and the blue channel holds
vertical-cost information. Submaps are rendered as OpenGL

“quads” which executes the GLSL fragment shader in parallel
using all of GPU’s processing elements. Submap RGB data is
blended using a cost function and output to the render-buffer
after a depth test. The OpenGL depth-buffer is used effectively
to fuse submap occupancy data both spatially and temporally.
Each pixel’s depth value is a cost function based on occupancy
value, squared distance from the submap origin, and the time
of submap data acquisition. These form an inverted bowl shape
in the depth-buffer for each submap, where thousands of them
can be rendered without concern of ordering. The depth-buffer
blends the final output map which minimises map noise. On
modest PC hardware with an entry-level GPU the submap
builder can create maps over 800mx800m in size and renders
1000 typical-sized submaps in 120ms with almost no load on
the CPU. If the map size exceeds the maximum GPU memory
(eg. on an embedded PC), the render is limited to a sliding
window and only the necessary submap textures are loaded.

D-3. Submap Matcher

To measure and create constraints between submaps from
different robots (multi-robot map fusion), and during loop
closure, the Submap Matcher performs an exhaustive search
to find the optimum relative pose (z,y, ¢) that aligns a pair of
submaps. On each UGV, the matcher repeatedly attempts to
match the current and recent submaps against other submaps
within its local area. On the GCS the matcher chooses pairs
of submaps based on a heuristic and continuously attempts to
create matches (large-scale loop closures).

Spatial matching algorithms typically use an efficient opti-
misation approach (such as ICP [12]) to reduce computational
cost. However they often become trapped in local maxima and
fail to provide correct solutions. To provide a robust matching
solution we use the “free” processing power available on
the GPU to perform an exhaustive correlation search of the
3D solution space (x,y,¢). Inspired by Olson’s GPU scan-
matching approach [14], the submap matching search is made
efficient using the hundreds of parallel processing elements
available in the GPU.

Referring to the left of figure 4, an OpenGL GLSL fragment

+30°

Multiple

local

maxima Correct
match

found

Yy
+
+X

-30°
Matching .
Likelihood Prior Posterior
Figure 4. Submap matching. A brute-force GPU-based correlation search

rapidly finds local maxima in the relative pose between submap pairs (left).
Odometry priors (center) combine to identify the correct relative pose (right).

shader is executed 9 times over a range of angle increments
(eg. +£30°). In each execution it calculates the correlation
between two submap likelihood maps over a range of (z,y)
pose offsets (eg. £5m). The brute-force search gives a com-
plete survey of the solution-space. Multiple local maxima can
be seen in this figure. On a low-end GPU (NVIDIA 9600
GT) about 200,000 submap correlations can be calculated per
second. A depth-limited recursive search through existing map
constraints identifies Gaussian probabilistic priors that can
be combined with the matching likelihood (figure 4, right).
The resulting posterior measures both the optimum relative
pose and accurate covariance information, which becomes a
potential new constraint. The covariance of the pose translation
identifies how constrained the matching geometry is. The ratio
of the smallest to largest eigenvalue of this covariance matrix
is used to scale the matching score: self-similar matches such
as corridors are heavily penalised.

Potential match constraints are tested in the local optimiser
before being accepted. The submap graph is searched to a
depth of 2 nodes, and errors in these nearby constraints are
evaluated. If the test constraint significantly increases the sum
of the constraint errors after a test optimisation it is rejected.

IV. RESULTS

The mapping system has been demonstrated in many envi-
ronments both indoor, outdoor and also with intermittent GPS
availability. It performs as designed, and would easily scale
to areas an order of magnitude larger than the challenge area.
During the challenge the WAMbot UGVs were troubled by
significant hardware problems, and while the mapping system
functioned as expected, they collected very little map data. The
results presented here were produced by replaying sensor logs
into our mapping system in real-time. The sensor logs were
provided by the University of Pennsylvania team, who place
second in the challenge. Their sensor package was similar to
ours and their data was easily reprocessed by our system.

The capabilities of our mapping system are most readily
demonstrated by watching the global map evolve over time.
We provide two videos'. The first from Phase 2 of the
challenge, and the second from the Old Ram Shed Challenge
(ORSC). The videos play at 15x real-time speed.

The Phase 2 video shows 7 UGVs exploring an agri-
cultural show-ground, passing in and out of horse stables.
Figure 5 shows the final map overlaid on aerial imagery. The
200mx 160m map is metrically accurate and correctly geo-
referenced by the intermittent and noisy GPS data. To quantify
the RMS error in the final map we selected a set of evenly
distributed features in the map and measured their linear error
to the aerial image. The estimated mean linear error was
0.57m. The final map has 446 submaps, 419 ground-truth
constraints and 1284 submap constraints. For the final map
each execution cycle it took 21ms to incrementally optimise
the entire pose-graph, and 87ms to build and output the global

! Available online at: http://www.rrfx.net/2011/04/large-scale-multi-robot-
mapping.html Note: these videos are encoded in DIVX format and play on
the freely available VLC media player.

Figure 5.
imagery. The graph of blue lines represent submap constraints.

The final global occupancy map for Phase 2 overlaid on aerial

occupancy map. On each UGV, with a majority of fixed nodes,
the optimisers runs in under 5Sms. With a 1Hz execution
cycle, the GPU is able to process an additional 7-10 submap
matches in the remaining time, more than enough to accurately
constrain the map. The initial submaps take some time to
become connected due to occlusions and ambiguous geometry
in the matching process, however after driving several meters
each UGV correctly joins its current submap to the global
graph. Slow drifts in submaps are observed as transient GPS
noise is filtered into ground-truth data. If additional ground-
truth constraints had been supplied by the operator, spatial
errors could have been reduced by an order of magnitude.

The ORSC video shows 5 UGVs exploring a 70mx40m
agricultural shed. Again the submaps take some time to
become connected however once the UGVs begin moving the
map is rapidly constrained and is metrically accurate. Note that
barriers inside the shed were temporary and very few walls
and angles were regular. No ground-truth was made available
to evaluate the accuracy of this map. The final map has 260
submaps and 2170 submap constraints. For the final map each
execution cycle spent 23ms incrementally optimising the pose-
graph and 85ms to build and output the global occupancy map.
We note that tunable parameters in the mapping system were
not changed when moving between environments.

V. CONCLUSION

We have described a large-scale multi-robot mapping system
that operates in a distributed and decentralised manner. Our
system implements an efficient graph-based SLAM approach
that readily scales to multiple robots and large environments.
It would easily map urban areas an order of magnitude larger
than the challenge area. We have shown good performance
with relatively inexpensive sensors, integrating both noisy
odometry and intermittent civilian-grade GPS data. The sys-
tem is robust to communications disruptions. Inexpensive yet
powerful GPUs are now common and we show how they can

be used very effectively for both composing global maps and
robust correlation matching of submaps. Our system has been
demonstrated in many environments both indoor and outdoor.
It performs as designed and helped team WAMbot achieve 4"
place in the MAGIC 2010 challenge.

Future work includes porting the WAMbots and our map-
ping system to ROS running on Linux. The SPA optimisa-
tion approach may be replaced by a newer general purpose
graph optimisation framework [16]. The GPU-based submap
matching and building tasks implemented in OpenGL may be
rewritten in the newer OpenCL compute framework. This will
allow both mixed-vendor GPUs and newer multi-core CPUs
to be easily used by the mapping system.

ACKNOWLEDGMENTS

We acknowledge all WAMbot team members for their tire-
less efforts in the 18 months before and during the challenge.
Special thanks to A. Boeing, M. Fazio, A. Gandossi, N. Garel,
A. Morgan, F. Ophelders and K. Vinsen. Also thanks to the
University of Pennsylvania team, A. Kushleyev, C. Phillips,
M. Phillips, J. Butzke and D. Lee for their challenge data.

REFERENCES

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and map-
ping,” Robotics and Automation Magazine, vol. 13, p. 99-117, 2006.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, ISBN: 978-0262201629, 2005.

[3] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart,
“Distributed multirobot exploration and mapping,” Proceedings of the
IEEE, vol. 94, no. 7, p. 1325-1339, 2006.

[4] L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri, “Simultaneous
localization and mapping using Rao-Blackwellized particle filters in
multi robot systems,” Journal of Intelligent & Robotic Systems, 2010.

[5] R. Madhavan, K. Fregene, and L. E. Parker, “Distributed cooperative
outdoor multirobot localization and mapping,” Autonomous Robots,
vol. 17, no. 1, pp. 23-39, Jul. 2004.

[6] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency
of the EKF-SLAM algorithm,” in International Conference on Intelligent
Robots and Systems, 2006.

[7] P. Piniés and J. D. Tardos, “Scalable SLAM building conditionally
independent local maps,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2007, p. 3466-3471.

[8] Y. Liu and S. Thrun, “Results for outdoor-SLAM using sparse extended
information filters,” in IEEE International Conference on Robotics and
Automation, 2003, p. 1227-1233.

[9] D. Hahnel, W. Burgard, D. Fox, and S. Thrun, “An efficient FastSLAM
algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements,” in International Conference on Intelli-
gent Robots and Systems, 2003.

[10] T. Bailey, J. Nieto, and E. Nebot, “Consistency of the FastSLAM
algorithm,” in IEEE Int Conference on Robotics and Automation, 2006.

[11] F. Lu and E. Milios, “Robot pose estimation in unknown environments
by matching 2D range scans,” Journal of Intelligent and Robotic
Systems, vol. 18, no. 3, p. 249-275, 1997.

, “Globally consistent range scan alignment for environment map-
ping,” Autonomous Robots, vol. 4, no. 4, p. 333-349, 1997.

[13] K. Konolige, G. Grisetti, R. Kummerle, B. Limketkai, and R. Vincent,
“Efficient sparse pose adjustment for 2D mapping,” in IEEE/RSJ Int
Conference on Intelligent Robots and Systems, 2010.

[14] E. B. Olson, “Real-time correlative scan matching,” in IEEE Interna-
tional Conference on Robotics and Automation, 2009.

[15] A. Boeing, T. Braunl, R. Reid, A. Morgan, and K. Vinsen, “Cooperative
Multi-Robot navigation and mapping of unknown terrain,” in Interna-
tional Conference on Robotics, Automation and Mechatronics, 2011.

[16] R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g20: A general framework for graph optimization,” in IEEE Int. Conf.
on Robotics and Automation, 2011.

[12]

