Jointly Compatible Pair Linking for
Visual Tracking with Probabilistic Priors

Robert Reid

School of Computer Science & Software Engineering
The University of Western Australia
35 Stirling Highway, Crawley, W.A. 6009, Australia.
Email: rob@rrfx.net

Abstract

Video sequences of real-world situations are often
difficult to track with machine vision. Scenes fre-
quently contain visual clutter, repetitive textures
and occlusions that make online visual feature track-
ing difficult. If the camera is allowed to shake or
moving objects are present, the exponential search-
space of potential feature matches rapidly becomes
intractable for real-time applications. In this pa-
per we introduce “Jointly Compatible Pair Linking”
(JCPL), an algorithm that efficiently and determinis-
tically identifies the most globally consensual set of
feature-measurement matches in tracking problems
with probabilistic priors. We demonstrate JCPL as
part of a two-stage visual tracking algorithm, show-
ing it correctly resolving significant matching ambi-
guities in sequences with highly dynamic camera mo-
tion while robustly ignoring moving scene objects.
In these experiments we show JCPL and the two-
stage tracker evaluating a fixed number of tests in an
exponential search-space. In one experiment JCPL
tested less than 1/200th of the total search space
and executed 4.6 times faster than the current gold-
standard algorithm “Joint Compatibility Branch and
Bound” (JCBB). Given highly ambiguous sequences
we show JCPL tracking successfully while standard
JCBB chooses incorrect matches and fails. Through-
out our experiments the number of costly image
matching operations are minimised, where in a typ-
ical sequence only 20.4% of the full image matching
operations are required.

1 Introduction

Visual tracking algorithms are found in many areas
of computer vision and robotics. In the general case
image features such as corners, edges or textured seg-
ments are selected and repeatedly searched for in fol-
lowing images. Exhaustive “bottom-up” searches pro-
ceed by matching correlations over the whole image
in pixel-space or by extracting a set of high-level de-
scriptors, such as SIFT (Lowe, 2004), and matching
them in descriptor-space. The bottom-up approach
blindly searches for every feature over each complete
image and can be computationally expensive or even
prohibitive if real-time visual tracking is desired.
While matching accuracy is dependent on feature
descriptor quality, incorrect matches eventually oc-
cur and the correct set of matches need to be iden-
tified using a global consensus technique. A model
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of the underlying scene is formed and used to verify
potential matches. The best model with the largest
(or most consensual) set of matches is sought, how-
ever the solution-space is often too large to search
exhaustively. Various sampling techniques, such as
the simple random sampling approach of RANSAC
(Fischler and Bolles, 1981), reduce this search-space
significantly.

Video sequences are often 2D projections of an
underlying 3D scene, such that image features that
are being tracked tend to move in predictable ways.
As an example, a video taken while traveling down a
corridor will have features that generally move out-
ward from the center of successive frames. Here
prior knowledge of the camera and scene dynamics
would allow us to create a motion model that de-
scribes how features are likely to move between im-
ages. The model can be a simple, such as the 2D
smoothing techniques used in optical flow (Fleet and
Weiss, 2006), or complex like the 3D visual simultane-
ous localisation and mapping (SLAM) methods that
have been the focus of considerable research over the
last decade (Davison et al., 2007). If the model’s state
parameters are estimated using a Bayesian estimator
such as the Extended Kalman Filter (EKF) or a parti-
cle filter, we have probabilistic information, or priors
available at each step of the visual matching process.
These priors can indicate whether a particular set of
matches might be correct and also where and how
widely to search for features in each image in a “top-
down” active search (Davison, 2003) that significantly
minimises the search effort.

Each feature’s prior describes an active search re-
gion where we expect to find any nearest-neighbour,
or individually compatible (IC) matches. The IC re-
gions for point features with Gaussian priors resemble
ellipses in image-space, where the size of the search
ellipse is determined by the desired confidence inter-
val, often 30 or 99.7%. Figure 1(a) shows a real-world
scene with several corner features being tracked. This
is a relatively difficult scene to track since many of
the IC regions have multiple possible matches. Often
identical objects, or objects with repeated textures,
can produce multiple matches or “perceptual aliasing”
like this. The problem is made worse when highly-
dynamic motion models, or slow camera frame-rates,
require large IC search regions that cover significant
amounts of each image. In cluttered scenes occlusions
may produce no valid matches along with multiple in-
correct matches. Finally when features diverge from
the motion model, or the model starts to become in-
consistent, large outliers make tracking very difficult.
Identifying set of matches and resolving global con-
sensus is an exponentially complex search problem.
As an example, if we find [0,3] potential matches for
100 image features there exists 4'°° ~ 10%° combina-
tions of matches, and only one of these sets is likely
to be correct.
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Figure 1: Visually tracking point features with Gaussian priors. A difficult image to track where many of
the feature’s individually compatible (IC) search regions (shown as ellipses) have multiple candidate matches
(small squares). (a) shows a full, naive, IC search (b) illustrates our JCPL algorithm selecting a consensual set
of matches (red ellipses) and the greatly reduced search areas in the second stage (blue ellipses). The online

version of this paper includes colour information.

A naive approach to finding global consensus when
priors exist and multiple candidate feature measure-
ments are found would be to choose the match closest
to the predicted value (the most IC match). However,
in many situations this can produce an inconsistent
set of matches with many outliers. For example, any
matches from a sequence taken by a panning camera
are likely to have residuals that are all biased in a sim-
ilar manner as a result of the common noisy camera
motion estimate.

A joint probability distribution over all feature
predictions, derived from the underlying model and
state estimate, can help identify sets of matches that
are in consensus. Neira and Tardos (2001) described
the joint compatibility test for a potential sets of
matches (section 2.2.1). The test takes into ac-
count the potentially strong correlations between the
feature’s measurement residuals and when a set of
matches pass the test they are said to be jointly com-
patible (JC). The JC test can be made very sensitive
such that a single outlier will cause it to fail. While
it is relatively cheap to perform, a failed test gives no
indication of which match or matches were outliers.
The JC test could be used to test all possible sets of
matches, however the exponential solution-space de-
scribed above makes this impractical in most cases.
Neira and Tardos (2001) also introduced the joint
compatibility branch and bound (JCBB) algorithm
which makes the search much more efficient. How-
ever, as discussed in section 2.2.1 it has issues when
multiple “close” measurements are considered for each
feature.

Our contribution, JCPL, is an algorithm that ef-
ficiently builds the largest possible sets of JC feature
matches by linking pairs of JC matches. It executes
a computationally bounded search and makes exten-
sive use of information available in the feature’s joint
priors. The JCPL algorithm is designed to perform
robustly in complex environments with clutter, per-
ceptual aliasing, occlusions and is also tolerant to
groups of features that completely break the motion
model. We demonstrate JCPL within a two-stage vi-
sual tracking algorithm. It identifies globally consen-
sual matches, and reduces both the number of match
combinations considered and the total area of IC im-
age regions searched. Our work is motivated by the
need to efficiently track large numbers of visual fea-
tures within practical real-world scenes while operat-
ing within hard real-time constraints.

In this paper we refer to multivariate Gaussian
probability distributions and follow the notation from
Bar-Shalom et al. (Bar-Shalom et al., 2001). As an
example the joint prior A (X, Pxx) is normally dis-

tributed with an predicted value of X = [Z1, ig...in]T
and square covariance matrix Pyx.

2 Related Work
2.1 Visual SLAM

Visual tracking can be found in most of the
vision-based Simultaneous Localisation and Mapping
(SLAM) techniques that have received increasing at-
tention over the last decade. The visual SLAM prob-
lem aims to sequentially estimate the ego-motion of
a camera at the same time as estimating a 3D map
of the environment. Here visual tracking is required
to identify the feature correspondences, or in SLAM
terms the “data association”, between 3D features
stored in a map and their projection into the cam-
era’s current 2D image. It is a particularly challeng-
ing problem since a single camera is unable to perceive
depth, providing “bearing only” information. A prob-
abilistic visual SLAM system could be described as a
visual tracker with a very comprehensive 3D motion
model. We use a visual SLAM framework in our work
to test JCPL and our visual tracking system.

Davison (2003) reported the first real-time monoc-
ular visual SLAM system that was later refined by
Davison et al. (2007) in their MonoSLAM system.
Their approach models a single camera moving with
6 degrees of freedom (DOF) at constant linear and an-
gular velocities within a static 3D environment. The
3D feature map is restricted to a small and sparse set
of m corner features due the O (mz) computational
cost of the EKF estimator. Salient corner features are
detected using the corner detector of Shi and Tomasi
(1994) and small 11x11 pixel image patch “templates”
extracted and stored for subsequent visual tracking.
In their work they show that the prior for each fea-
ture defines an elliptical “active search” region (here
referred to as the IC region) that significantly re-
duces the number of expensive cross-correlation image
search operations required. There are many exam-
ples of visual SLAM systems in the literature that use
some form of top-down active search (Williams et al.,
2007; Sola, 2007; Pietzsch, 2008; Paz, Pinies, Tardos
and Neira, 2008; Davison et al., 2004; Clemente et al.,
2007; Civera et al., 2008), including most real-time
implementations.

Figure 2 shows the data flow within a generic
Bayesian 3D visual SLAM system. Our JCPL al-
gorithm can be used for visual tracking at @. The
system’s state estimate is a multivariate Gaussian
x ~ N (%,P). The camera pose x, ~ N (X, Pe.)
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Figure 2: Visual tracking within a 3D visual SLAM framework. The multivariate Gaussian prediction N (z, S)
shown at @ is used to perform a “top-down” search within each feature’s IC ellipse, shown in red at @. The

measurement residuals at @ are passed back to the Bayesian estimator.
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is predicted for the current frame using a camera mo-
tion model (eg. 6DOF constant velocity) while the
pose uncertainty P.. is increased to allow for un-
known normally distributed noise. Through a mea-
surement model h; each feature y; is projected into
the 2D image “measurement-space” using the pre-
dicted camera pose, pose uncertainty and a photo-
metric model. Each feature’s bi-variate Gaussian pre-
diction z; ~ N (Z;, S;) is calculated:

where H; is the Jacobian % and R, is the mea-

surement noise estimate. For each corner (point) fea-
ture, the innovation covariance matrix S; describes
an elliptical IC region in the image centered around
Z;. Its measurement z; is IC within a 30 con-
fidence interval if it satisfies the chi-square test:

[z; — Zi]T S;l [z; — 7] < X%;o‘gw- A block matrix ex-
pansion of H; and P in equation (1) reveals that S;
is the summation of 5 terms that each contribute to
the overall size of the elliptical search region (Davi-
son, 2003). The dominant term is normally due to
the uncertainty in the camera’s pose and is approxi-
mately the same size for each predicted feature. The
larger the camera’s pose uncertainty, the larger the
features’ IC regions become. Similarly the IC ellipse
size is made larger by more dynamic camera motion
models or slower frame-rates.

The active search approach presented by Davison
et al. picks the “best” image match in each feature’s
IC region ranked by image correlation score. This
works well for uncluttered scenes and low-dynamic
camera motion given the small IC regions that are
searched. However, if the IC regions are large, and
in the difficult situations described earlier, multiple
equally valid measurements can arise. Here the set
of “best” matches are not necessarily going to be JC,
or in global consensus. If they are passed into the
Bayesian estimator, it is highly likely it will become
corrupted and the inconsistencies will persist until
tracking fails.

Referring again to figure 2, our two-stage tracking
algorithm with JCPL can be inserted into a visual
SLAM framework between the points labeled @ and
®. The input to JCPL is the joint PDF N (Z, S), cre-
ated by stacking the predictions for each feature from

(1). The full innovation covariance S = HPH” + R
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is calculated by stacking each feature’s Jacobian H;,
with R = diag(R1,Rs...R;). If the majority of fea-
tures are successfully matched, there is little addi-
tional cost incurred generating the input priors for
JCPL since S is required for the Bayesian update step
after ®. Results using JCPL and the two-stage track-
ing algorithm are given in section 4. We note here
that the cost of our visual tracking approach is nor-
mally lower than the full IC active search in (Davison,
2003; Davison et al., 2007) due to the greatly reduced
IC image search regions in the secondary set.

2.2 Global Consensus in Visual Tracking

As described in the previous section, performing top-
down searches for the “best” match within each fea-
ture’s IC region could be considered a basic approach
to ensuring global consensus given a large search-
space of potential feature-measurement matches.
However, as described in section 1, it will fail in com-
plex scenes or with highly-dynamic cameras. While
JCPL provides an optimal solution to finding global
consensus, we first review other works in this section.

2.2.1 Joint Compatibility & JCBB

The term “joint compatibility” (JC) is first seen in the
robotics literature in the work by Neira and Tardos
(2001). It describes a chi-squared test (Bar-Shalom
et al., 2001) using the joint Gaussian prior N (Z, S),
a set of measurement residuals v =z — Z, and a cho-
sen confidence interval (eg. 30 or 99.7%) to identify
whether the measurements contain one or more out-
liers:

D?*=v"s™'v D? < Xgim(z);04997 (2)
The set of measurement residuals are said to be JC
if the Mahalanobis distance D? is less than the cor-
responding chi-square value Xﬁim(z);O.QQ?' Neira and

Tardos (2001) describe the JC test within a SLAM
context using an implicit measurement function. In
(2) we pose the test within measurement-space, sim-
ilar to Clemente et al. (2007), and note its similarity
to the IC region test in section 2.1.

In the same work Neira and Tardos (2001) describe
the joint compatibility branch and bound (JCBB) al-
gorithm, a tree-based search that attempts to effi-
ciently identify the largest JC set within the expo-
nential search-space of measurement-feature matches.




Their JCBB approach was presented for situations
with weak-or-no data association, using an interpre-
tation tree (Grimson, 1990) to recursively branch over
each of the measurements attempting to find which
feature they belong to. JCBB has proven to be very
effective in many robotics and SLAM related areas
where joint priors exist.

Several recent visual SLAM implementations
(Clemente et al., 2007; Williams et al., 2007; Piet-
zsch, 2008) have effectively used JCBB to reject incor-
rect matches in real-time visual tracking. Clemente
et al. (2007) report JCBB taking 2ms for 60 fea-
tures, while Pietzsch (2008) reports 0.3ms for hun-
dreds of features. However in each implementation
they only consider the single “best” candidate mea-
surement from each feature’s IC region producing
a simple “yes match” or “null” binary interpretation
tree. Each level in the tree has one feature and
measurement such that the search is computation-
ally bounded for a particular number of features. In
other works where multiple matches per feature are
considered, Chli and Davison (2009) report JCBB
taking 97.1ms for 11 features. Civera et al. (2010)
report JCBB taking up to 20 seconds per frame for
50 features and in one test 1544 seconds, demonstrat-
ing the effect of exponential growth in the solution-
space. The standard JCBB algorithm requires all im-
age measurements to be made before it resolves con-
sensus. In visual tracking with large IC regions, this
represents a lot of additional expensive image search
operations.

To help limit the exponential explosion, the JCBB
algorithm stops searching below any tree branch when
1) the JC test fails or 2) the size of the current set of
non-null matches cannot be larger than the largest
set already found. In our experiments where fea-
tures have multiple possible IC measurements we ob-
served that a given set of matches may just fail the JC
test, however with the addition of one or more very
compatible measurement the set could then pass the
JC test again. This larger JC set would never be
considered by JCBB. Further it is possible for many
identically-sized sets to exist that are all JC. While an
exhaustive search will pick the “best” match with the
lowest D? score, the set-size bounding rule in JCBB
non-deterministically returns the first of the largest
JC sets it finds. For a small set of features (eg n < 10)
and when candidate measurements are relatively close
a sub-optimal set will often be returned. We compare
our JCPL algorithm to a modified version of JCBB
that is less greedy and returns the optimal set.

2.2.2 RANSAC with Priors

RANSAC (Fischler and Bolles, 1981) is a sampling
approach to global consensus that attempts to ran-
domly fit the largest set of measurements to a model.
Adaptations using probabilistic information, such as
KALMANSAC (Vedaldi et al., 2005) and Guided-
MLESAC (Tordoff and Murray, 2005) have been de-
scribed in the literature. Paz et al. use the JC test as
a measure of the model-fit in their randomised joint
compatibility (RJC) work (Paz, Pinies, Tardos and
Neira, 2008; Paz, Tardos and Neira, 2008), describing
its use in both visual tracking and map-aligning. Such
non-deterministic, random, approaches are less desir-
able when an efficient path to the optimal solution
(such as JCPL) is available.

Civera et al. (2010) recently described “1-Point
RANSAC for EKF Filtering”, an approach that in-
corporates random sampling directly into an EKF
predict-update loop. They show how a single “hy-
pothesis” measurement with strong priors and a mo-
tion model can verify global consensus across the

remaining feature measurements. The approach re-
quires only a handful of tests, and conveniently side-
steps the linearisation issues encountered in EKF
measurement functions. However, it still searches
each feature’s full IC image region, which is costly for
large camera pose uncertainties and large numbers of
feature measurements.

2.2.3 Active Matching

Chli and Davison (2009) describe their active match-
ing (AM) approach as visual tracking using priors.
Their algorithm searches each image efficiently while
simultaneously resolving global consensus. It uses
a mixture of Gaussians approach to track multiple
feature match hypothesis. As features are matched
the remaining predictions are repeatedly conditioned
and their IC image search regions correspondingly
reduced. It could be considered a multi-hypothesis
version of either Davison’s original work (Davison,
2005) or sequential compatibility nearest-neighbour
(SCNN) as described by Neira and Tardos (2001).

AM has been demonstrated tracking very well in
difficult scenes. The original version consumed a
large amount of time predicting information gains
before deciding where to measure. Handa et al.
(2010) recently published their improved CLAM and
SubAM versions, where they make approximations
that greatly speed up the AM approach. They report
their SubAM approach visually tracking hundreds of
features in real-time within the PTAM framework
(Klein and Murray, 2007). The AM approach is likely
to produce similar results to our JCPL work, however
there is currently no reference implementation of AM
available to perform a direct comparison.

3 JCPL for Visual Tracking

Our two-stage visual tracking algorithm with JCPL
takes a camera image, a list of n feature descriptors
and a multivariate Gaussian prior p(z) ~ N (Z,S)
predicting the pixel location of these features. The
algorithm is broken into 3 stages: 1) the first p “pri-
mary” features are selected, predicted and measured.
2) JCPL is used to find the best jointly compatible
(JC) set of matches. 3) The remaining “secondary”
features are conditioned, measured and matched with
their best IC match. The complete set of primary and
secondary matches, being in global consensus, are re-
turned without outliers. In our experiments 4 to 8
primary features represented a good balance between
tracking stability and computational cost. Refer to
figure 1(b) during the following description.

3.1 Primary feature measurement

The visual tracker starts by choosing p primary fea-
tures using a heuristic that aims to minimise both
the cost of finding their JC set, while minimising
the uncertainty in the conditioned joint distribution
P (Zsec|Zpri). The more widely the primary features
are spread over the image, the more stable and re-
fined the secondary IC regions become. Conversely,
image distortions at the edge of wide-angle lenses and
large primary IC search regions suggest more central
primary features are chosen.

We divide the image into p regions that the fea-
ture predictions z; are classified into. The features are
each given an score proportional to their expected dis-
tance to the center of their region. Results from each
previous feature measurement are recorded. Features
that have previously been predicted but not mea-
sured, measured but failed their JC test, or had multi-
ple potential measurements (costly for JC) are flagged



and a penalty is added onto their feature scores. The
feature with the lowest score in each region is selected,
corresponding to a spatially well distributed and more
readily matched primary set.

Each primary feature’s image descriptor is used to
search its potentially large IC region for candidate
measurements. The search results are filtered to find
all local maxima and the best [1,c] measurements are
returned. The maximum measurement count c is de-
termined to balance expected image clutter, IC search
size and computational cost. In our experiments ¢ = 4
provided a good balance. If no measurements are
found then a replacement primary feature can be cho-
sen and measured from the same image region.

3.2 Jointly Compatibility Pair Linking

JCPL uses the JC test D2 < X?lim(z);o.997 to find the

best and largest set of matches for the primary fea-
ture measurements. Here we define a match as a tuple
H = (F;, M;) connecting feature 7 to its measurement
j. The small number of features and limited mea-
surements create a solution-space of (c+1)P possible
sets of matches, including sets with null-matches. An
exhaustive search of this solution-space, while com-
putationally bounded, is still expensive. For example
with p = 8, ¢ = 4, a full search requires 390625 sets
to be tested.

3.2.1

The JCPL algorithm deterministically performs a
minimal number of JC tests on sets of matches us-
ing the monotonic nature of the Mahalanobis distance
D? as a bounding rule. We use the fact that joining a
match Hj to a set of JC matches {H;, Hy}, can only

increase the distance D% . < D% p, y.. Here the

conditioned prediction p(z3|z1,2z2) is the only loca-
tion where z3 could be measured that that would give
no change in the distance. While attempting to build
full p-sized sets of matches {H;...H,}, we can use this
property to reject any smaller sets. As an example, for
the pair {Hy, Hy} if D} 5, > DHIMpr is not possi-
ble for a better full JC set to be formed using this pair
as a base. Further, if we construct a set of matches
by joining two pairs, eg. {Hi, Ho} U {Hs, Hy}, the
new distance is DY p. g g, = min(D¥, g, D, w, )
being greater than the minimum of the two pairs.!

Monotonicity of D?

3.2.2 Identifying JC Pairs of Matches

JCPL starts by testing the JC of all pairs of
matches in the primary set (5)c? (in our example 448
pairs). For each pair {H,, Hy} the D} . distance
is recorded against its matches. For each match the
best (minimum) distance from all the pairs it was a
part of, mer min 18 stored. This value is the mini-
mum D? distance any larger set containing the match
can have. The matches are sorted by their Dpaw min
distance and any match without a JC pair at this step
is rejected. In our tests for a cluttered scene 40% of
pairs failed this first JC test, and up to 20% of the
worst outliers are removed at this step. Testing all
pairs is computationally inexpensive.

3.2.3 Linking Pairs of Matches

Using all of the JC match pairs, JCPL iteratively links
the pairs into chains, attempting to form full p-sized

LCode demonstrating the monotonicity of D? is available at the
author’s website http://www.rrfx.net/2010/08/jcpl.html

sets of matches. Only one match per feature is al-
lowed such that the sequence is not allowed to loop
back on itself. As JCPL discovers each potential set,
the matches are ordered and unique sets are recorded.
If a full p-sized set is encountered it is JC tested im-
mediately.

The list of pairs is ordered with the most likely
(minimum D?_, ) matches first. With reasonable pri-

pair
ors and measurements the matches in the (’2’) best

JC pairs are very likely to form all (or at least part)
of the best p-sized set. Given these ordered matches
{H;...Hp} will be searched first, JCPL is very likely to
join them together and test this set of matches first.
Even if this set’s D%flme passes the JC test, we still

need to keep searching to ensure we have the best full
set. However the remaining search becomes very ef-
ficient, since we can immediately prune all potential
matchmg pairs where their D2 is greater than

our currently best DHl...H,,-

In normal operation this search-space pruning is
likely to remove a majority of incorrect matches, dras-
tically reducing the search space. A handful more full
JC tests are often all that’s required to be certain the
best and most JC set of matches have been found.
This is the optimistic and most likely case.

If no full p-sized JC sets exist as a result of, for ex-
ample, image occlusion or unmodelled behavior, the
JCPL algorithm starts testing all the p—1 and smaller
sets. The iterative search has already identified and
stored the candidate sets formed by linked pairs of
matches. They are also already partially sorted such
that the remaining search proceeds efficiently. The
largest sized sets (eg. p — 1) are sequentially tested
first, maintaining the secondary ordering. The same
D? bounding rule is used and any JC sets found dur-
ing this second stage are immediately used to prune
the remaining search space. As in the optimistic case,
the algorithm typically only searches a small fraction
of candidate sets. However, if every one of these sets
fail the JC test the algorithm can fall back to the
best JC pair. If this occurs the underlying model and
priors are likely to have become inconsistent.

pair-min

3.3 Secondary feature measurement

The best set of primary matches z,,; are then used
to condition the secondary features’ priors. The joint
Gaussian prior is first reorganised (or indexed for ef-
ficiency):

p(z)NN(z,s):Nq;mi [ S SSPD
sec ps ss
It is then conditioned (Bar-Shalom et al., 2001):

p (Zsec|zpri) ~N (zsec\pria ssec\pm’)

Where: )
Zsec|pri = Zsec + SpsS;;p [Zp'rz - Zpri]
Ssec\pm’ = Sss Spss S

The refined IC regions given by Zseclpri and Sgec|pri
are searched sequentially and the most IC match for
each feature chosen. At this point the combined set of
globally consensual primary and secondary matches
are returned.

To provide a measure of how globally consensual
the set is, the JC of the entire set (D?) can be tested
relatively cheaply, since S™1 is usually required for a
Bayesian update step.

4 Results

The JCPL algorithm was evaluated as part of a two-
stage visual tracking front-end for a 3D visual SLAM
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n=82,p=8,¢c=38

n=43,p=8,c=14

JCPL [ JCBB [JCBB” | Exh

JCPL [ JCBB [ JCBB” | Exh

Primary selection (ms)

4.83

1.37

Pri. image search (ms)

64.22 (8.03 per feature)

34.40 (4.29 per feature)

Concensus (JC) (ms)

31.40 | 92.63 | 106.40 | 550.18

33.44 | 152.83 | 154.63 | 1867.57

Sec. conditioning (ms) 3.28 0.96
Sec. image search (ms) 179.67 (2.41 per feature) 55.98 (1.60 per feature)
Total time (ms) | 283.40 | 344.63 358.41 | 802.19 | 126.15 | 245.54 247.34 | 1960.28
JC tests performed 209 1136 1153 10342 198 1839 1841 42288

Primary pixels

181967 (22746 per feature)

79307 (9913 per feature)

Secondary pixels

10642 (143 per feature)

7715 (221 per feature)

Table 1: Timings comparing JCPL, JCBB” and Exhaustive global consensus approaches. Note that standard
JCBB failed to track the video sequences. Also due to the exponential nature of the search, the two-stage
visual tracking process was necessarily used in all tests, without it JCBB and the Exhaustive approaches were

many orders of magnitude slower.

system as described in section (2.1). The EKF-based
visual SLAM implementation followed Davison et al’s
MonoSLAM (Davison et al., 2007) with the inverse
depth parameterisation (IDP) technique of Civera et
al. Civera et al. (2008). A notable difference is the
large increase (4x) in our camera’s dynamic process
model noise. The increased angular velocity noise, in
particular, allows for very dynamic camera motion.
The system was designed and tested in Python us-
ing the Numpy, Scipy and OpenCV libraries. The vi-
sual SLAM implementation averages 420ms per frame
with 50 features on a 2.50GHz Intel Core2 CPU.
While faster visual SLAM implementations exist, this
was sufficient to evaluate the JCPL and the tracker.

JCBB is currently the gold-standard and has been
widely used for resolving consensus with priors (sec-
tion 2.2.1), including in many visual SLAM systems
(Clemente et al., 2007; Williams et al., 2007; Pietzsch,
2008). Given its prevalence, we chose to compare our
work to it. However, in our difficult experimental
video sequences it chooses a bad, but still JC, set of
matches between 10.4% to 11.6% of the time. These
errors causes the EKF state to become inconsistent
and tracking fails. To compare our work to JCBB,
we modified the overly greedy bounding conditions.
We define JCBB” with the bounding conditions mod-
ified to allow further recursions so that the best (and
correct) set is found. To help out the measurements
were pre-ordered by IC score also. To confirm that
JCPL (and also JCBBT) were returning the best set
of matches we exhaustively test all combinations of
matches.

It was not practical to test JCBB” and the exhaus-
tive approach on more than p = 10 features with ¢ = 8
possible measurements each. The exponential search
space made execution several orders of magnitude
slower. To compare our work against JCBB” and
an exhaustive search, we gave them both a large ad-
vantage by testing them within our two-stage tracker,
resolving consensus on the primary features only. All
algorithms are treated to the same with caching of
intermediate calculations.

We tested JCPL and the tracker on a large number
video sequences. We present the results for two scenes
here?. The first is a repetitively textured synthetic
scene containing two walls and a moving teapot. The
textures and extremely jerky camera motion were de-
signed to provoke extreme perceptual aliasing. The
second sequence was a less cluttered office workspace
with fast sweeping camera motion. Various stages
of tracking and the consensus test were timed and

2Videos showing our visual tracking results are available at the
author’s website http://www.rrfx.net/2010/08/jcpl.html

recorded. Timings in table 1 are averages taken from
between frames 10-200.

We encourage the reader to view the video files
accompanying this paper. They show the two-stage
visual tracker and JCPL handling each of the test
sequences correctly. JCPL identifies the best set of
matches in each frame, on average 3.4 to 4.6 times
faster than the optimised JCBB” implementation.
JCPL tests only 0.5% to 2.0% of the total solution
space while JCBB? tests an order of magnitude more.
Compared to a visual tracker measuring full IC re-
gions for all features, our two-stage tracking pro-
cess tests 4.9 to 9.7 times less image pixels. The
O((n — p)?) cost incurred in conditioning the sec-
ondary features is present, however it and the pri-
mary selection heuristic are still minimal compared
the cost of a full IC image search. In the first se-
quence the moving teapot is robustly ignored as it
moves after frame 200. We note the IDP features are
difficult to initialise during large camera motions, an
apparent limitation of the underlying EKF and not
JCPL or the tracker. Python’s overheads are evident
given the lack of time difference between the average
primary and secondary feature measurements.

5 Discussion

In our test sequences with large dynamic camera mo-
tion and perceptual aliasing JCPL is extremely ro-
bust and tracks correctly. Verified with an exhaus-
tive search, JCPL chooses the “best” set of matches
in all frames of all test sequences. The current gold-
standard approach, JCBB, fails to identify the cor-
rect matches in about 10% of frames and tracking
usually fails. Our modified non-greedy version of
JCBB (JCBBT) produces the same correct matches
as JCPL, however on average JCPL is 3.4 to 4.6 times
faster. Further, if JCBB was not used within our
two-stage tracker, it would be many orders of mag-
nitude slower again. JCPL is also robust to moving
objects that cover up to 25% of each frame (non-static
scenes).

JCPL requires a slight increase in memory use
compared to JCBB”, where JCBB’s recursive algo-
rithm is memory stack-intensive compared to JCPL
storing lists of potential match sequences. The al-
gorithmic complexity of JCPL is higher than JCBB,
here the optimised version of JCPL is about 100 lines
of Python code, whereas JCBB”’s recursive design is
only about 40 lines of Python.

While JCBB is currently the most popular ap-
proach for visual data association, in the future we
plan to directly compare JCPL to the recent work



of Handa et al. (2010). Their approach is complex
and no reference implementation has been made avail-
able. Execution times given in their original AM pa-
per (Chli and Davison, 2009) show their matching
approach is 1.8 to 3.4 times faster than JCBB. While
our approach shows a larger improvement, 3.4 to 4.6
times, no direct comparisons or conclusions can be
made. SubAM is likely to search a similar number
of pixels in each frame, however spend more time re-
peatedly conditioning groups of feature predictions.

Initial direct comparisons with the 1-point
RANSAC approach of Civera et al. (2010) have been
performed, however conclusions cannot be made here.
Civera’s approach is not designed for situations where
each feature has a large number of potential IC
matches. It begins by finding the best single IC match
for each feature and in our tests returns only a small
fraction of the globally consensual feature matches.
Although a modified approach could produce compa-
rable results, searching all of IC regions would require
significant additional image search operations.

We plan to integrate JCPL and the two-stage
tracker into an optimised, real-time C/C++ system
based on libCVD (Klein and Murray, 2007). Given
JCBB has been shown to work well in simple video
sequences in real-time, we expect that JCPL with
the two-stage tracker will be very effective given
the observed performance increase. Even in com-
plex and dynamic scenes its bounded computation
time should enable hard real-time constraints. Fur-
ther, JCPL may be useful on low-powered processors,
where higher efficiency and ability to search larger IC
areas within each frame, would permit processing at
lower frame rates (eg. 2Hz). Our current Python-
based, non-optimised, system can be run in real-time
at about this frame rate. JCPL’s efficient and robust
consensus approach allows feature matching thresh-
olds to be loosened, possibly improving tracking abil-
ities.

6 Conclusions

We have described the JCPL consensus algorithm
which can be used in a variety of tracking scenar-
ios where probabilistic priors are available. We have
demonstrated JCPL and a two-stage visual tracker
as the front-end for a visual SLAM system. JCPL
produces notable speed, accuracy and robustness im-
provements over JCBB, the most common global con-
sensus approach.
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